Skip to content

Predicting Approval of School Funding

Predicting the Approval of a School Funding Proposal Using Derived Text-Analysis Variables & Random Forest Prediction Models Sridevi Pulugurtha This research presents the investigation of data analysis techniques and approaches used to solve a DonorsChoose.org (Non-Profit Educational Funding Organization) statistical problem from Kaggle. The ultimate goal was to predict the approval of a given school-funding proposal via a machine-learning algorithm only using text-analysis data. This was achieved by only using the 2 essay prompts that were submitted for the funding proposal and generating new data with sentimental and grammatical text analysis. [pdf-embedder url=”https://www.diya-research.org/wp-content/uploads/2021/03/Sridevi-Final-Report.pdf” title=”Sridevi – Final Report”]
document.addEventListener('DOMContentLoaded', () => { const menuToggle = document.querySelector('.elementor-menu-toggle'); const dropdownMenus = document.querySelectorAll('.menu-item-has-children'); if (menuToggle && dropdownMenus.length > 0) { menuToggle.addEventListener('click', () => { document.querySelector('.elementor-nav-menu__container').classList.toggle('dropdown-open'); }); dropdownMenus.forEach((menu) => { const submenu = menu.querySelector('.sub-menu'); if (submenu) { menu.addEventListener('click', (e) => { if (window.innerWidth <= 768) { e.preventDefault(); submenu.classList.toggle('dropdown-open'); } }); } }); } });